These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sequential impact of tiazofurin and ribavirin on the enzymic program of the bone marrow.
    Author: Prajda N, Hata Y, Abonyi M, Singhal RL, Weber G.
    Journal: Cancer Res; 1993 Dec 15; 53(24):5982-6. PubMed ID: 7903199.
    Abstract:
    Tiazofurin and ribavirin are clinically used inhibitors of IMP dehydrogenase (DH), binding to the NAD and IMP sites, respectively, of the target enzyme. In patients with chronic granulocytic leukemia in blast crisis, daily tiazofurin infusions decreased the high IMP DH activity in blast cells and resulted in 77% response (G. Weber. In: R. A. Harkness et al., Purine and Pyrimidine Metabolism in Man, Vol. VII, Part B, pp. 287-292, 1991). However, patients relapsed in a few weeks with emergence of high IMP DH activity (G. Tricot et al., Int. J. Cell Cloning, 8: 161-170, 1990). The present study showed that the tiazofurin-induced depression of IMP DH activity in rat bone marrow can be maintained by ribavirin injection. Tiazofurin (150 mg/kg, i.p., once a day for 2 days) decreased IMP DH activity to 10% and ribavirin (250 mg/kg, i.p., once a day for the subsequent 3 days) maintained the enzymic activity at 20 to 30% of control values. In control rats where no ribavirin was given, IMP DH activity of the tiazofurin-treated rats rapidly returned to the range of untreated animals. The decrease of IMP DH activity (t1/2 = 2.6 h) sharply preceded that of the bone marrow cellularity (t1/2 = 17.4 h). In addition to the target enzyme, IMP DH, tiazofurin also decreased activities of the guanylate metabolic enzymes, guanine phosphoribosyltransferase and GMP reductase, and the pyrimidine salvage enzymes, deoxycytidine and thymidine kinases with t1/2 of 2.6, 4.7, 6.0, 3.4, and 6.5 h, respectively. In cycloheximide-treated rats, where much of protein biosynthesis was blocked, the t1/2(8) of these five enzymes in bone marrow were shorter, 1.6, 4.3, 3.0, 0.6, and 0.8 h, respectively. Thus, the impact of tiazofurin in the bone marrow entails a decrease in the activity of the target enzyme, IMP DH, and also of other enzymes in purine and pyrimidine biosynthesis as a result of the enzyme half-lives shortened by this drug. These novel observations should assist in achieving better protection and recovery of bone marrow during and after chemotherapy.
    [Abstract] [Full Text] [Related] [New Search]