These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regioselective contribution of the cytochrome P-450 2D subfamily to propranolol metabolism in rat liver microsomes. Author: Masubuchi Y, Kagimoto N, Narimatsu S, Fujita S, Suzuki T. Journal: Drug Metab Dispos; 1993; 21(6):1012-6. PubMed ID: 7905378. Abstract: The metabolism of propranolol was examined by using microsomes from Dark Agouti rats known as a poor-metabolizer animal model for debrisoquine 4-hydroxylation and Wistar rats. Propranolol 4- and 5-hydroxylations followed biphasic Michaelis-Menten kinetics, and 7-hydroxylation and N-desisopropylation were monophasic in both strains. The kinetic studies showed that the Vmax for propranolol 7-hydroxylase activity and the Vmax of high-affinity phases for propranolol 4- and 5-hydroxylase activities were markedly low in Dark Agouti rats compared with those in Wistar rats. The antibody against a cytochrome P-450 isozyme, P-450BTL (Suzuki, T., et al., Drug Metab. Dispos. 20, 367-373, 1992), belonging to the CYP2D subfamily, inhibited by 90% propranolol 4-, 5-, and 7-hydroxylase activities in liver microsomes from male Wistar rats at a low propranolol concentration (5 microM). However, less inhibitory effects of the antibody on propranolol 4- and 5-hydroxylase activities were observed at a high propranolol concentration (1 mM), whereas a similar inhibitory effect of the antibody on propranolol 7-hydroxylase activity was shown. The antibody inhibited propranolol N-desisopropylase activity, but less extent of the inhibition on this activity than those on ring-hydroxylase activities was observed at the low and high propranolol concentrations. These results indicate that a polymorphic cytochrome P-450 isozyme(s) belonging to the CYP2D subfamily is involved predominantly in propranolol 4-, 5-, and 7-hydroxylations at low substrate concentrations in the rat.[Abstract] [Full Text] [Related] [New Search]