These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hepatic ketogenesis in newborn pigs is limited by low mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase activity.
    Author: Duée PH, Pégorier JP, Quant PA, Herbin C, Kohl C, Girard J.
    Journal: Biochem J; 1994 Feb 15; 298 ( Pt 1)(Pt 1):207-12. PubMed ID: 7907471.
    Abstract:
    In newborn-pig hepatocytes, the rate of oleate oxidation is extremely low, despite a very low malonyl-CoA concentration. By contrast, the sensitivity of carnitine palmitoyltransferase (CPT) I to malonyl-CoA inhibition is high, as suggested by the very low concentration of malonyl-CoA required for 50% inhibition of CPT I (IC50). The rates of oleate oxidation and ketogenesis are respectively 70 and 80% lower in mitochondria isolated from newborn-pig liver than from starved-adult-rat liver mitochondria. Using polarographic measurements, we showed that the oxidation of oleoyl-CoA and palmitoyl-L-carnitine is very low when the acetyl-CoA produced is channelled into the hydroxymethylglutaryl-CoA (HMG-CoA) pathway by addition of malonate. In contrast, the oxidation of the same substrates is high when the acetyl-CoA produced is directed towards the citric acid cycle by addition of malate. We demonstrate that the limitation of ketogenesis in newborn-pig liver is due to a very low amount and activity of mitochondrial HMG-CoA synthase as compared with rat liver mitochondria, and suggest that this could promote the accumulation of acetyl-CoA and/or beta-oxidation products that in turn would decrease the overall rate of fatty acid oxidation in newborn- and adult-pig livers.
    [Abstract] [Full Text] [Related] [New Search]