These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Incorporation of trans long-chain n-3 polyunsaturated fatty acids in rat brain structures and retina.
    Author: Grandgirard A, Bourre JM, Julliard F, Homayoun P, Dumont O, Piciotti M, Sebedio JL.
    Journal: Lipids; 1994 Apr; 29(4):251-8. PubMed ID: 7909911.
    Abstract:
    During heat treatment, polyunsaturated fatty acids and specifically 18:3n-3 can undergo geometrical isomerization. In rat tissues, 18:3 delta 9c,12c,15t, one of the trans isomers of linolenic acid, can be desaturated and elongated to give trans isomers of eicosapentaenoic and docosahexaenoic acids. The present study was undertaken to determine whether such compounds are incorporated into brain structures that are rich in n-3 long-chain polyunsaturated fatty acids. Two fractions enriched in trans isomers of alpha-linolenic acid were prepared and fed to female adult rats during gestation and lactation. The pups were killed at weaning. Synaptosomes, brain microvessels and retina were shown to contain the highest levels (about 0.5% of total fatty acids) of the trans isomer of docosahexaenoic acid (22:6 delta 4c,7c,10c,13c,16c,19t). This compound was also observed in myelin and sciatic nerve, but to a lesser extent (0.1% of total fatty acids). However, the ratios of 22:6 trans to 22:6 cis were similar in all the tissues studied. When the diet was deficient in alpha-linolenic acid, the incorporation of trans isomers was apparently doubled. However, comparison of the ratios of trans 18:3n-3 to cis 18:3n-3 in the diet revealed that the cis n-3 fatty acids were more easily desaturated and elongated to 22:6n-3 than the corresponding trans n-3 fatty acids. An increase in 22:5n-6 was thus observed, as has previously been described in n-3 fatty acid deficiency. These results encourage further studies to determine whether or not incorporations of such trans isomers into tissues may have physiological implications.
    [Abstract] [Full Text] [Related] [New Search]