These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of polyamines on glutamate dehydrogenase within permeabilized kidney-cortex mitochondria and isolated renal tubules of rabbit. Author: Jarzyna R, Lietz T, Bryła J. Journal: Biochem Pharmacol; 1994 Apr 20; 47(8):1387-93. PubMed ID: 7910459. Abstract: The effect of polyamines on glutamate dehydrogenase [L-glutamate: NAD(P) oxidoreductase (deaminating) [EC 1.4.1.3]) activity has been studied in both permeabilized kidney-cortex mitochondria and isolated renal tubules of rabbit. Spermidine was the most potent inhibitor of glutamate synthesis in permeabilized mitochondria resulting in about 80% decrease of the enzyme activity at 5 mM concentration. Putrescine, alpha-monofluoromethylputrescine (MFMP) and (R,R)-delta-methyl-alpha-acetylenic-putrescine (MAP) were more efficient than spermine. The inhibitory action of polyamines was potentiated by an elevated NADH content in the reaction mixture. Increasing concentrations of either NH4Cl, KCl or NaCl in the incubation medium resulted in a decrease of polyamine-induced inhibition of the enzyme activity, indicating that monovalent cations can compete with polyamines for the binding site at glutamate dehydrogenase. The inhibitory action of spermidine on glutamate synthesis was abolished by 2 mM ADP or 10 mM L-leucine, allosteric activators of the enzyme, as well as on the addition of either oxalate or sulphate at 20 mM concentrations. Spermidine did not affect glutamate formation when NADH was substituted by NADPH, suggesting an importance of the NADH binding to the inhibitory site of the enzyme for a decrease of reductive amination of 2-oxoglutarate by polyamine. Although spermidine did not influence glutamate deamination in the presence of NAD+, it stimulated this process by about 70% when NAD+ was substituted by NADP+. In the presence of ADP the stimulatory effect of polyamine was not significant. The data indicate that in permeabilized rabbit kidney-cortex mitochondria the effect of polyamines on both glutamate formation and glutamate deamination via the reaction catalysed by glutamate dehydrogenase is dependent upon the coenzyme utilized by the enzyme. In the presence of NADH their inhibitory effect on the glutamate formation may be alleviated by allosteric activators of the enzyme, and concentrations of potassium, sodium, sulphate and oxalate. In isolated rabbit renal tubules incubated with 5 mM methionine sulfoximine and aminooxyacetate, in order to inhibit glutamine synthetase and aminotransferases, respectively, 5 mM spermidine decreased glutamate formation by about 30%, while putrescine and spermine did not significantly diminish the enzyme activity. In the presence of octanoate glutamate formation was reduced by about 30% by naturally occurring polyamines as well as MFMP and MAP, indicating that under these conditions NADH rather than NADPH is utilized as the coenzyme. In view of these data it is possible to suggest that polyamines may be of importance to control glutamate dehydrogenase activity under physiological conditions.[Abstract] [Full Text] [Related] [New Search]