These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase: expression, purification, and characterization of recombinant wild-type and Cys129 mutant enzymes. Author: Rokosz LL, Boulton DA, Butkiewicz EA, Sanyal G, Cueto MA, Lachance PA, Hermes JD. Journal: Arch Biochem Biophys; 1994 Jul; 312(1):1-13. PubMed ID: 7913309. Abstract: A cDNA for the human cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase (EC 4.1.3.5) was subcloned and expressed from a T7-based vector in Escherichia coli. The over-produced enzyme was purified using a three-step protocol that generated 20 to 30 mg protein/liter cell culture. The physical and catalytic properties of the recombinant synthase are similar to those reported for the nonrecombinant enzymes from chicken liver [Clinkenbeard et al. (1975a) J. Biol. Chem. 250, 3124-3135] and rat liver [Mehrabian et al. (1986) J. Biol. Chem. 261, 16249-16255]. Mutation of Cys129 to serine or alanine destroys HMG-CoA synthase activity by disrupting the first catalytic step in HMG-CoA synthesis, enzyme acetylation by acetyl coenzyme A. Furthermore, unlike the wild-type enzyme, neither mutant was capable of covalent modification by the beta-lactone inhibitor, L-659,699 [Greenspan et al. (1987) Proc. Natl. Acad. Sci. USA 84, 7488-7492]. Kinetic analysis of the inhibition by L-659,699 revealed that this compound is a potent inhibitor of the recombinant human synthase, with an inhibition constant of 53.7 nM and an inactivation rate constant of 1.06 min-1.[Abstract] [Full Text] [Related] [New Search]