These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Depletion of retinal dopamine does not affect the ERG b-wave increment threshold function in goldfish in vivo.
    Author: Lin ZS, Yazulla S.
    Journal: Vis Neurosci; 1994; 11(4):695-702. PubMed ID: 7918220.
    Abstract:
    Increment threshold functions of the electroretinogram (ERG) b-wave were obtained from goldfish using an in vivo preparation to study intraretinal mechanisms underlying the increase in perceived brightness induced by depletion of retinal dopamine by 6-hydroxydopamine (6-OHDA). Goldfish received unilateral intraocular injections of 6-OHDA plus pargyline on successive days. Depletion of retinal dopamine was confirmed by the absence of tyrosine-hydroxylase immunoreactivity at 2 to 3 weeks postinjection as compared to sham-injected eyes from the same fish. There was no difference among normal, sham-injected or 6-OHDA-injected eyes with regard to ERG waveform, intensity-response functions or increment threshold functions. Dopamine-depleted eyes showed a Purkinje shift, that is, a transition from rod-to-cone dominated vision with increasing levels of adaptation. We conclude (1) dopamine-depleted eyes are capable of photopic vision; and (2) the ERG b-wave is not diagnostic for luminosity coding at photopic backgrounds. We also predict that (1) dopamine is not required for the transition from scotopic to photopic vision in goldfish; (2) the ERG b-wave in goldfish is influenced by chromatic interactions; (3) horizontal cell spinules, though correlated with photopic mechanisms in the fish retina, are not necessary for the transition from scotopic to photopic vision; and (4) the OFF pathway, not the ON pathway, is involved in the action of dopamine on luminosity coding in the retina.
    [Abstract] [Full Text] [Related] [New Search]