These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Binding of actinomycin D to the T(G)nT motif of double-stranded DNA: determination of the guanine requirement in nonclassical, non-GpC binding sites. Author: Bailey SA, Graves DE, Rill R. Journal: Biochemistry; 1994 Sep 27; 33(38):11493-500. PubMed ID: 7918362. Abstract: Strong binding of the antitumor antibiotic actinomycin D to the sequence 5'-TGGGT-3' in double-stranded DNA was recently established by equilibrium binding studies (Bailey et al., 1993). Actinomycin D binding to this -TGGGT- containing sequence was shown to be comparable to that of an -XGCY- containing oligonucleotide (Ka approximately 10(6) M-1). Investigation of -TGGGT- as a high-affinity binding site for actinomycin D follows from our 1989 sequencing study (Rill et al., 1989) in which the photoaffinity analog of actinomycin D (7-azidoactinomycin D) was used to determine DNA base sequence specificities and neighboring base effects. The studies presented here examine the guanine requirements for actinomycin D binding to such nonclassical (non-dGpC) sites by varying the number of central guanine residues in a series of selected duplex oligonucleotides. The central -T(G)nT- motif varies from n equals 1 to 4. Actinomycin D binding to each of these undecamers is characterized and correlated with binding to oligonucleotides of identical length and similar sequences that contain classical dGpC binding sites. Binding affinities of actinomycin D to this series of oligonucleotide duplexes (10 degrees C) can be summarized as -TGGGT- > -TGGT- > TGGGGT- > -TGT. The kinetics of SDS-induced dissociation of actinomycin D from these oligonucleotides reveal single-exponential decays with duration dependent on the sequence at the binding site. With the exception of the -TGGGT- containing oligomer, dissociation times for the T(G)nT duplexes were drastically different and much shorter than times obtained for the dissociation of actinomycin D from oligonucleotides having classical dGpC sites.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]