These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anti-M monoclonal antibodies cross-reacting with variant Mg antigen: an example of modulation of antigenic properties of peptide by its glycosylation.
    Author: Jaśkiewicz E, Czerwinski M, Syper D, Lisowska E.
    Journal: Blood; 1994 Oct 01; 84(7):2340-5. PubMed ID: 7919351.
    Abstract:
    Some monoclonal antibodies (MoAbs) directed against blood group M-related epitope of glycophorin A (GPA) were found to agglutinate rare variant erythrocytes carrying GPA of Mg type. In contradistinction to normal GPA-M or -N, the N-terminal portion of GPA-Mg is not glycosylated. Therefore, the multipin peptide synthesis was used for testing the specificity of the cross-reacting MoAbs. Among several anti-M and anti-N MoAbs tested, only three anti-M (E3, E6, 425/2B) agglutinated Mg erythrocytes and showed binding to the synthetic octapeptides corresponding to N-terminal sequences of GPA-M (SSTTGVAM), GPA-N (LSTTEVAM), and GPA-Mg (LSTNEVAM). Testing multiple peptide analogs (window and replacement analysis) showed that these MoAbs were specific for peptidic epitope in which Met8 and Val6 were the most essential amino acid residues. The amino acid replacements Ser<-->Leu1 or Gly<-->Glu5 (M v N) and Thr4<-->Asn4 (M and N v Mg) had no or negligible effect on the reaction of synthetic peptides with the MoAbs. However, when Ser2, Thr3, and Thr4 carry O-linked sialooligosaccharides (normal GPA-M or -N), the MoAbs recognize Gly5- and sialic acid-dependent blood group M-related epitope. An interesting finding concerning anti-M/Mg MoAbs described here is the fact that glycosylation of amino acid residues adjacent to the most important part of peptidic epitope not only differentially modulates the proper exposure of peptidic epitope, but also alters the requirement for some amino acid residues present within the epitope. Pathologic conditions, including hematologic disorders, are often accompanied by alterations in protein glycosylation, resulting not only from differences in the structure of antigen polypeptide chain, but also from changes in specificity or expression of enzymes involved in glycosylation. Our present findings draw attention to possibility of the bidirectional modulation of protein antigenicity by glycosylation and may be helpful in interpretation of some results obtained with MoAb used for diagnostic or other purposes.
    [Abstract] [Full Text] [Related] [New Search]