These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Author: Wennström S, Hawkins P, Cooke F, Hara K, Yonezawa K, Kasuga M, Jackson T, Claesson-Welsh L, Stephens L. Journal: Curr Biol; 1994 May 01; 4(5):385-93. PubMed ID: 7922352. Abstract: BACKGROUND: There is substantial evidence that phosphoinositide 3-kinase (PI 3-kinase) is a critical component of signalling pathways used by the cell-surface receptors for a variety of mammalian growth factors and other hormones. The physiological product of this enzyme is a highly polar membrane lipid called phosphatidylinositol (3,4,5)-trisphosphate This lipid has been postulated to act as a second-messenger in cells but its putative targets are still unknown. RESULTS: A particular rearrangement of actin filaments, which results in membrane ruffling, is elicited by the activation of PDGF beta-receptors expressed in cultured porcine aortic endothelial cells. We have found that this consequence of PDGF beta-receptor activation is inhibited by three independent manipulations of PI 3-kinase activity: firstly, by the deletion of tyrosine residues in the PDGF beta-receptor to which PI 3-kinase binds; secondly, by the overexpression of a mutant 85 kD PI 3-kinase regulatory subunit to which the catalytic kinase subunit cannot bind; and thirdly, by the addition of the fungal metabolite wortmannin, which is a potent inhibitor of the catalytic activity of PI 3-kinase. CONCLUSIONS: These results argue strongly that phosphatidylinositol (3,4,5)-trisphosphate synthesis is required for growth-factor-stimulated membrane ruffling in porcine aortic endothelial cells, and suggest that synthesis of this lipid may be part of a signalling pathway leading to direct or indirect activation of the small GTP-binding protein Rac.[Abstract] [Full Text] [Related] [New Search]