These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A transient entanglement coupling mechanism for DNA separation by capillary electrophoresis in ultradilute polymer solutions.
    Author: Barron AE, Blanch HW, Soane DS.
    Journal: Electrophoresis; 1994 May; 15(5):597-615. PubMed ID: 7925237.
    Abstract:
    Using capillary electrophoresis, large DNA molecules (2.0-23.1 kbp) may be rapidly separated in ultradilute polymer solutions (< 0.002% w/w) under a high-voltage, steady field (265 V/cm). At this polymer concentration, the separation mechanism appears to be significantly different from that postulated to occur in crosslinked gels. Based on experimental results obtained with DNA restriction fragments and with negatively charged latex microspheres, we conclude that the Ogston and reptation models typically used to describe gel electrophoresis are not appropriate for DNA separations in such dilute polymer solutions. Electrophoresis experiments employing solutions of both small and large hydroxyethyl cellulose polymers highlight the importance of polymer length and concentration for the optimum resolution of DNA fragments varying in size from 72 bp to 23.1 kbp. A transient entanglement coupling mechanism for DNA separation in dilute polymer solutions is developed, which suggests that there is no a priori upper size limit to DNA that can be separated by capillary electrophoresis in a constant field.
    [Abstract] [Full Text] [Related] [New Search]