These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Membrane binding properties of the factor IX gamma-carboxyglutamic acid-rich domain prepared by chemical synthesis. Author: Jacobs M, Freedman SJ, Furie BC, Furie B. Journal: J Biol Chem; 1994 Oct 14; 269(41):25494-501. PubMed ID: 7929250. Abstract: The fully gamma-carboxylated peptides based upon the complete and truncated Gla/aromatic amino acid stack domains of human Factor IX were prepared by solid phase peptide synthesis using Fmoc (N-(9-fluorenyl)methoxycarbonyl) chemistry. A 47-residue peptide Factor IX-(1-47) and a 42-residue peptide Factor IX-(1-42), both containing 12 residues of L-gamma-carboxyglutamic acid, were purified by high performance liquid chromatography and oxidized to form the disulfide bond. Quantitative gamma-carboxyglutamic acid analysis of Factor IX-(1-47) and Factor IX-(1-42) indicated the presence of 12.1 and 11.2 gamma-carboxyglutamic acid residues/mol of peptide, respectively; no glutamic acid was detected. As monitored by fluorescence quenching, calcium ions induced the prototypical conformational transition in Factor IX-(1-47), but not in Factor IX-(1-42), that is observed with Factor IX. Half-maximal quenching of the intrinsic fluorescence of Factor IX-(1-47) was observed at Ca(II) concentrations of about 50 microM. Factor IX-(1-47) bound to the conformation-specific antibodies, anti-Factor IX:Mg(II) and anti-Factor IX:Ca(II)-specific in the presence of metal ions. Factor IX-(1-47) bound to phospholipid membranes, as monitored by energy transfer from intrinsic fluorophores to dansyl (5-dimethylaminonaphthalene-1-sulfonyl)-phosphatidylethanolamine incorporated into a lipid bilayer composed of phosphatidylserine:phosphatidylcholine. In contrast, Factor IX-(1-42) bound poorly to these same membranes. Factor IX-(1-47) did not inhibit Factor XIa activation of Factor IX but did inhibit the activation of Factor X by Factor IXa bound to Factor VIII in the presence of calcium ions and phospholipid. These results show that phospholipid membrane binding is a property of the Gla/aromatic amino acid stack domain and that the Factor IX-(1-47) peptide, prepared by chemical synthesis, preserves the membrane binding properties and the metal-induced conformational transitions observed in native Factor IX. These results indicate that Factor IX-(1-47) but not Factor IX-(1-42) is a suitable model for structural studies of Factor IX-membrane interaction.[Abstract] [Full Text] [Related] [New Search]