These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli. Author: Nelken I, Young ED. Journal: J Neurophysiol; 1994 Jun; 71(6):2446-62. PubMed ID: 7931527. Abstract: 1. The principal cells of the dorsal cochlear nucleus (DCN) are mostly inhibited by best frequency (BF) tones but are mostly excited by broadband noise (BBN), producing the so-called type IV response characteristic. The narrowband inhibitory responses can be explained by the inhibitory influence of interneurons with type II response characteristics. However, it is not clear that all the details of the type IV responses can be accounted for by this neural circuit. In particular, many type IV units are inhibited by band-reject noise (notch noise); type II units tend to be only weakly excited by these stimuli, if at all. In this paper we study the relationships between the narrowband, inhibitory and the wideband, excitatory regimens of the type IV responses and present the case for the existence of a second inhibitory source in DCN, called the wideband inhibitor (WBI) below. 2. Type IV units were studied using pure tones, noise bands arithmetically centered on BF, notch noise centered on BF, and BBN. We measured the rate-level function (response rate as function of stimulus level) for each stimulus. This paper is based on the responses of 28 type IV units. 3. Evidence for low-threshold inhibitory input to type IV units is derived from analysis of rate-level functions at sound levels just above threshold. Notch noise stimuli of the appropriate notch width produce inhibition at threshold in this regime. When BBN is presented, this inhibition appears to summate with excitation produced by energy in the band of noise centered on BF, resulting in BBN rate-level functions with decreased slope and maximum firing rate. A range of slopes and maximal firing rates is observed, but these variables are strongly correlated and they are negatively correlated with the strength of the inhibition produced by notch noise; this result supports the conclusion that a single inhibitory source is responsible for these effects. 4. By contrast, there is a weak (nonsignificant) positive correlation between the strength of the inhibitory effect of notch noise and the slope/maximal firing rate in response to narrowband stimuli, including BF tones. The contrast between this positive nonsignificant correlation and the significant negative correlation mentioned above suggests that more than one inhibitory effect operates: specifically, the type II input is responsible for inhibition by narrowband stimuli and a different inhibitory source, the WBI, produces inhibition by notch stimuli. 5. Several lines of evidence are given to show that type II units cannot produce the inhibition seen with notch noise stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]