These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: DNA double-strand break in vivo at the 3' extremity of exons located upstream of group II introns. Senescence and circular DNA introns in Podospora mitochondria.
    Author: Sainsard-Chanet A, Begel O, Belcour L.
    Journal: J Mol Biol; 1994 Oct 07; 242(5):630-43. PubMed ID: 7932720.
    Abstract:
    In the filamentous fungus Podospora anserina, the unavoidable phenomenon of senescence is associated with the amplification of the first intron of the mitochondrial cox1 that accumulates as circular DNA molecules consisting of tandem repeats. This group II intron (cox1-i1 or alpha) is able to transpose and contains an open reading frame with significant amino acid similarity with reverse transcriptases. The generation of these intronic circular DNA molecules, their amplification and their involvement in the senescence process are unresolved questions. We demonstrate here that: (1) another group II intron, the fourth intron of gene cox1, cox1-i4, is also able to give precise DNA end to end junctions; (2) this intronic sequence can be found amplified during senescence, although to a lesser extent than cox1-i1; (3) the amplification of the DNA multimeric cox1-i1 molecules likely does not proceed by autonomous replication; (4) the generation of the DNA intronic circles does not require efficient intron splicing; (5) a DNA double-strand break occurs in vivo at the 3' extremity of the cox1-e1 and cox1-e4 exons preceding the group II introns that form circular DNAs. On the whole, these results show that the ability to form DNA circular molecules is a property of some group II introns and they demonstrate the occurrence of a specific DNA cleavage at or near the integration site of these group II introns. The results strongly suggest that this cleavage is involved in the formation of the group II intronic DNA circles and could also be involved in the phenomenon of group II intron homing.
    [Abstract] [Full Text] [Related] [New Search]