These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: cis-regulatory sequences responsible for alternative splicing of the Drosophila dopa decarboxylase gene. Author: Shen J, Hirsh J. Journal: Mol Cell Biol; 1994 Nov; 14(11):7385-93. PubMed ID: 7935452. Abstract: The Drosophila dopa decarboxylase gene, Ddc, is expressed in the hypoderm and in specific sets of cells in the central nervous system (CNS). The unique Ddc primary transcript is alternatively spliced in these two tissues. The Ddc CNS mRNA contains all four exons (A through D), whereas the hypodermal mRNA contains only three exons (A, C, and D). To localize cis-regulatory sequences responsible for Ddc alternative splicing, a Ddc minigene and several fusion genes containing various amounts of Ddc sequences fused to fushi tarazu (ftz) exon 1 were constructed and introduced into flies by P-element-mediated germ line transformation. We find that Ddc intron ab and exon B are sufficient to regulate Ddc alternative splicing, since transcripts of a minimal fusion gene containing most of Ddc intron ab and exon B are spliced to exon B in the CNS but not in the hypoderm. These results indicate that Ddc alternative splicing is regulated by either a negative mechanism preventing splicing to exon B in the hypoderm or a positive mechanism activating splicing to exon B in the CNS. Our previous data suggest that Ddc hypodermal splicing is the actively regulated splicing pathway (J. Shen, C. J. Beall, and J. Hirsh, Mol. Cell. Biol. 13:4549-4555, 1993). Here we show that deletion of Ddc intron ab sequences selectively disrupts hypodermal splicing specificity. These results support a model in which Ddc alternative splicing is negatively regulated by a blockage mechanism preventing splicing to exon B in the hypoderm.[Abstract] [Full Text] [Related] [New Search]