These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Residual Ca2+ and short-term synaptic plasticity. Author: Kamiya H, Zucker RS. Journal: Nature; 1994 Oct 13; 371(6498):603-6. PubMed ID: 7935792. Abstract: At many synapses, the amount of transmitter released by action potentials increases progressively during a train of spikes. This enhancement of evoked transmitter release grows during tetanic stimulation with several time constants, each bearing a different name (facilitation: tens to hundreds of milliseconds; augmentation: several seconds; potentiation: several minutes), and the enhancement of release to test spikes after a tetanus decays with similar time constants. All these processes depend on presynaptic Ca2+ influx during the conditioning tetanus. It has often been proposed that these forms of synaptic plasticity are due to residual Ca2+ present in nerve terminals following conditioning activity. We tested this idea directly by using photolabile Ca2+ chelators to reduce residual Ca2+ following conditioning stimulation or to generate an artificial elevation in Ca2+ concentration, and observed the effects on synaptic transmission at crayfish neuromuscular junctions. We found that facilitation, augmentation and potentiation are caused by the continuing action of residual Ca2+. Augmentation and potentiation seem to arise from Ca2+ acting at a separate site from facilitation, and these sites are different from the molecular target triggering neurosecretion.[Abstract] [Full Text] [Related] [New Search]