These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of intracellular pH in crypt cells from rabbit distal colon. Author: Abrahamse SL, Vis A, Bindels RJ, van Os CH. Journal: Am J Physiol; 1994 Sep; 267(3 Pt 1):G409-15. PubMed ID: 7943238. Abstract: H+ secretory mechanisms and intrinsic intracellular buffering capacity were studied in crypt cells from rabbit distal colon. To this end crypts of Lieberkühn were isolated by microdissection, and intracellular pH (pHi) was measured using digital imaging fluorescence microscopy and the pH-sensitive fluorescent dye 2',7'-bis(2-carboxyethyl)- 5(6)-carboxyfluorescein. In the absence of HCO(3-)-CO2 and presence of Na+, resting pHi was 7.51 +/- 0.04 (n = 237/23, cells/crypts). However, 6 min after superfusion with a solution containing zero Na+, 1 x 10(5) M Sch-28080 and 5 x 10(-8) M bafilomycin A1, pHi in cells at the bottom of the crypts was significantly reduced, whereas pHi in cells at the top of the crypts remained unchanged. The intrinsic buffering capacity of cells from the middle to the top portion of crypts was significantly higher in the pHi range 7.2-7.6 than of cells at the bottom of the crypt. H+ secretion after an NH(4+)-NH3 pulse amounted to 245 +/- 53 microM/s (n = 73/7) at pHi 7.1 and was largely Na+ dependent and ethylisopropylamiloride sensitive. The Na(+)-independent recovery of pHi after an acid load was insensitive to Sch-28080 and bafilomycin A1. In conclusion, pHi in colonic crypt cells is regulated through Na+/H+ exchange activity in the absence of HCO3-. In addition, intracellular buffering capacity varied with the position along the crypt axis, whereas Na+/H+ exchange activity and pHi did not.[Abstract] [Full Text] [Related] [New Search]