These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electron microscope autoradiographic evidence for specific transneuronal transport in the mouse accessory olfactory bulb. Author: Barber PC, Parry DM, Field PM, Raisman G. Journal: Brain Res; 1978 Aug 25; 152(2):283-302. PubMed ID: 79435. Abstract: The distribution of radioactive material was examined autoradiographically 8 h after application of [3H] proline to the vomeronasal organ in mice. Labelled material was transported along the axons of the vomeronasal nerves to their terminals in the glomerular layer of the accessory olfactory bulb (AOB). A lesser but consistent amount of radioactivity was found in the external plexiform layer (EPL) of the AOB. Electron microscopic autoradiography was used to determine which of the components of the EPL contained this labelled material. The method of proportional grain counts showed that the highest concentration of silver grains lay over the mitral cell dendrites, which are the elements immediately postsynaptic to the vomeronasal nerve axons. However, a fairly high proportion of grains also lay over the peripheral processes of granule cells. By application of a method of 'crossfire analysis' (which is explained in detail) it was possible to show that the observed grain distribution is best explained by the assumption that the radioactive material is confined to mitral cells, and the labelling over granule cell processes is due to crossfire from these sources. Im one animal at 5 days after [3H]proline administration label was found to have extended from mitral cells to granule cells, suggesting that the transsynaptically transported radioactive material, which was confined to the mitral cells at 8 h, may have become further redistributed at longer survivals. In a control experiment, [3H]proline was applied directly to the surface of the AOB. This gave rise to a completely different distribution of radioactivity in the EPL: radioactive material was present in all tissue components.[Abstract] [Full Text] [Related] [New Search]