These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glutamate-induced neuronal death in cerebellar culture is mediated by two distinct components: a sodium-chloride component and a calcium component.
    Author: Dessi F, Charriaut-Marlangue C, Ben-Ari Y.
    Journal: Brain Res; 1994 Jul 04; 650(1):49-55. PubMed ID: 7953676.
    Abstract:
    The relative contribution of sodium, chloride and calcium ions in the neuronal death induced by glutamate is controversial. We have therefore reassessed the effects of extracellular ion substitution on glutamate-induced neuronal death in cerebellar granule cell culture. Sodium or chloride substitution by impermeant ions prevented the initial swelling observed after glutamate exposure (100 microM, 15 min) in balanced salt solution but did not prevent the progressive degeneration of cerebellar neurons over the next few hours. In low calcium medium, glutamate exposure also led to degeneration of granule neurons. In contrast, sodium or chloride substitution and calcium omission prevented both the initial swelling and the delayed neuronal death after glutamate exposure. These morphological observations were confirmed both by measurement of the intracellular water space with [3H]methylglucose and by quantification of cell viability by 3-(4,5-dimethylthiazol-2-yl-)-2,5-diphenyl tetrazolium bromide (MTT) staining. We conclude that glutamate-induced neuronal death is mediated by two distinct components: a calcium-independent sodium-chloride dependent component and a calcium-dependent component. Each one of these components leads to the death of cerebellar neurons after glutamate exposure.
    [Abstract] [Full Text] [Related] [New Search]