These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antidisialoganglioside ricin A-chain immunotoxins show potent antitumor effects in vitro and in a disseminated human neuroblastoma severe combined immunodeficiency mouse model. Author: Gottstein C, Schön G, Tawadros S, Kube D, Wargalla-Plate UC, Hansmann ML, Wacker HH, Berthold F, Diehl V, Engert A. Journal: Cancer Res; 1994 Dec 01; 54(23):6186-93. PubMed ID: 7954465. Abstract: Several monoclonal antibodies (mAbs) were screened on different neuroblastoma cell lines to evaluate ricin A-chain immunotoxins for possible use against human neuroblastoma. Four mAbs were identified that exhibited high antitumor activity against neuroblastoma cell lines as measured in an indirect cytotoxicity assay. These mAbs, including 14G2a (antidisialoganglioside), ch14.18 (a humanized switch variant), BW704 (antidisialoganglioside), and chCE7 (anti-glycoprotein of M(r) 190,000), were subsequently linked via the bivalent linker N-succinimidyloxycarbonyl-alpha-methyl-alpha-(2-piridyldithio++ +)toluene to deglycosylated ricin A chain. The most potent immunotoxin, 14G2a.dgA, inhibited the protein synthesis of neuroblastoma cell lines IMR5 and NMB by 50% at concentrations of 6 x 10(-12) M. To test the antitumor efficacy of these immunotoxins in vivo, we developed a disseminated human neuroblastoma model in severe combined immunodeficiency mice. Treatment of tumor-bearing mice with 14G2a.dgA 12 days after tumor challenge resulted in a significant prolongation of survival as compared with phosphate-buffered saline-treated controls (16.8 versus 6.5 weeks). We conclude that ricin A-chain immunotoxins might be of potential use in the treatment of human neuroblastoma.[Abstract] [Full Text] [Related] [New Search]