These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A physiological measure of carbonic anhydrase in Müller cells. Author: Newman EA. Journal: Glia; 1994 Aug; 11(4):291-9. PubMed ID: 7960033. Abstract: Carbonic anhydrase activity was characterized in freshly dissociated Müller cells of the salamander retina. Intracellular pH was monitored using ratio imaging of the indicator dye BCECF as extracellular PCO2 was varied. The extracellular solution was switched rapidly (141 ms rise time) from a HEPES buffered to a CO2-HCO3- buffered solution (both pH 7.4). Introduction of CO2-HCO3- produced a rapid cell acidification. Cell pH dropped from a steady-state pH of 7.02 in HEPES solution to pH 6.81 in CO2-HCO3-. Methazolamide, a carbonic anhydrase inhibitor, dramatically reduced the initial rate of acidification, demonstrating that the acidification was produced by the carbonic anhydrase-catalyzed hydration of CO2. The initial rate of acidification, 52.6 pH units per min (0.88 pH units per s), was reduced approximately 150-fold to 0.36 pH units per min by 10(-3) M methazolamide. Half-maximal inhibition occurred at a methazolamide concentration of 5.6.10(-7) M. The carbonic anhydrase inhibitor acetazolamide (10(-3) M) also greatly reduced the rate of cell acidification. The latency to the onset of carbonic anhydrase inhibition was 660 ms for methazolamide and 7.5 s for acetazolamide. The carbonic anhydrase inhibitor benzolamide (10(-4) M, 4 min exposure), which is poorly membrane permeant, had little effect on the rate of cell acidification, indicating that the site of carbonic anhydrase action was intracellular. The activity of Müller cell carbonic anhydrase may help to buffer extracellular CO2 variations in the retina.[Abstract] [Full Text] [Related] [New Search]