These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and some immunologic properties of an O-acetyl pectin [poly(1-->4)-alpha-D-GalpA]-protein conjugate as a vaccine for typhoid fever.
    Author: Szu SC, Bystricky S, Hinojosa-Ahumada M, Egan W, Robbins JB.
    Journal: Infect Immun; 1994 Dec; 62(12):5545-9. PubMed ID: 7960137.
    Abstract:
    Pectin, a plant polysaccharide, is mostly a linear homopolymer of poly(1-->4)-alpha-D-GalpA with < 5% neutral sugars: its molecular size has a broad distribution around 400 kDa, and the degree of esterification is < 5%. The structure of the capsular polysaccharide of Salmonella typhi (Vi) differs from pectin in that it is N acetylated at C-2 and O acetylated at C-3, and has a molecular size of approximately 2 x 10(3) kDa. There is no serological cross-reaction between pectin and Vi. Pectin, when O acetylated at C-2 and C-3, is antigenically identical to Vi in double immunodiffusion. Unlike Vi, O-acetylated pectin (OAcPec) is not immunogenic in mice, probably because of its comparatively low molecular weight. After storage at 3 to 8 degrees C for 3 months, there was no change in the O-acetyl content or the M(r) of OAcPec. At 60 degrees C, the M(r) of OAcPec declined more rapidly than that of Vi. OAcPec conjugated to tetanus toxoid elicited Vi antibodies in mice, and reinjection elicited a booster response. The levels of Vi antibodies elicited by OAcPec-tetanus toxoid conjugates were lower than those elicited by Vi conjugates, but these differences were not statistically significant. OAcPec has some advantages because it can be measured by standardized colorimetric assays and because it forms more soluble conjugates with proteins than does Vi. One disadvantage is that its glycosidic bond is not as stable as that of Vi. The use of a plant polysaccharide, pectin, as an immunogen for prevention of a systemic infection caused by a capsulated pathogen (S. typhi) provides a novel approach to improve the preparation and immunogenicity of polysaccharide-based vaccines.
    [Abstract] [Full Text] [Related] [New Search]