These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Domains of phosphatase inhibitor-2 involved in the control of the ATP-Mg-dependent protein phosphatase.
    Author: Park IK, DePaoli-Roach AA.
    Journal: J Biol Chem; 1994 Nov 18; 269(46):28919-28. PubMed ID: 7961854.
    Abstract:
    Inhibitor-2 (I-2) inhibits the free catalytic subunit of type 1 phosphatase (CS1) and controls the cyclic inactivation/activation of CS1 in the ATP-Mg-dependent protein phosphatase complex. We report here the effect of mutations on these two properties of I-2. Substitution of Thr-72 with Ala, Asp, or Glu generated complexes with CS1 that could not be activated. Mutation of Ser-86 did not affect activation by glycogen synthase kinase-3 (GSK-3) alone but impaired synergistic activation by casein kinase II and GSK-3. Mutations in the region between Thr-72 and Ser-86 did not alter the inhibitory potency of I-2 but prevented complete inactivation of CS1. A mutant without the 35 NH2-terminal residues exhibited an IC50 for CS1 200-fold higher than that of wild-type I-2. However, it formed an inactive phosphatase complex with CS1, which was activated by GSK-3. A mutant with the 59 COOH-terminal residues deleted retained full inhibitory activity and formed an inactive complex that could not be activated by GSK-3. We conclude that the NH2-terminal region of I-2 is involved in inhibition, that the sequence between Thr-72 and Ser-86 is necessary for the conversion of CS1 from an active to an inactive conformation, and that the COOH terminus is required for activation by GSK-3. Thus, different functional domains of I-2 may interact with distinct regions of CS1.
    [Abstract] [Full Text] [Related] [New Search]