These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Purification and amino-terminal sequencing of the high affinity phenylalkylamine Ca2+ antagonist binding protein from guinea pig liver endoplasmic reticulum.
    Author: Moebius FF, Hanner M, Knaus HG, Weber F, Striessnig J, Glossmann H.
    Journal: J Biol Chem; 1994 Nov 18; 269(46):29314-20. PubMed ID: 7961902.
    Abstract:
    A high affinity phenylalkylamine Ca2+ antagonist binding polypeptide (Moebius, F. F., Burrows, G. G., Striessnig, J., and Glossmann, H. (1993) Mol. Pharmacol. 43, 139-148) was purified to homogeneity from the endoplasmic reticulum of guinea pig liver with the aid of [3H]emopamil, an antiischemic agent, and [3H]azidopamil, a photoaffinity label. The purified protein retained its high affinity for the antiischemic drugs emopamil (Kd = 4 nM), opipramol (IC50 = 15 nM), trifluoperazine (IC50 = 2 nM), and for Zn2+ (IC50 = 2 microM). Ferguson plots revealed a molecular mass of 27.2 kDa. Partial amino acid sequence information was obtained by Edman degradation and revealed no homology to known protein sequences. Antibodies raised against a synthetic peptide corresponding to the first 25 NH2-terminal amino acid residues specifically immunoprecipitated the [3H]azidopamil photoaffinity-labeled polypeptide and recognized the protein in Western blots. Cross-linking with a variety of homo- and heterobifunctional agents lead to the formation of dimers. Since in the purified preparation no other subunit could be identified with different protein stains, our results indicate that the [3H]emopamil binding site is formed by the homodimer of a novel membrane protein.
    [Abstract] [Full Text] [Related] [New Search]