These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of nuclear polyadenylated RNA-binding proteins in Saccharomyces cerevisiae.
    Author: Wilson SM, Datar KV, Paddy MR, Swedlow JR, Swanson MS.
    Journal: J Cell Biol; 1994 Dec; 127(5):1173-84. PubMed ID: 7962083.
    Abstract:
    To study the functions of heterogeneous nuclear ribonucleoproteins (hnRNPs), we have characterized nuclear polyadenylated RNA-binding (Nab) proteins from Saccharomyces cerevisiae. Nab1p, Nab2p, and Nab3p were isolated by a method which uses UV light to cross-link proteins directly bound to poly(A)+ RNA in vivo. We have previously characterized Nab2p, and demonstrated that it is structurally related to human hnRNPs. Here we report that Nab1p is identical to the Np13p/Nop3p protein recently implicated in both nucleocytoplasmic protein shuttling and pre-rRNA processing, and characterize a new nuclear polyadenylated RNA-binding protein, Nab3p. The intranuclear distributions of the Nab proteins were analyzed by three-dimensional immunofluorescence optical microscopy. All three Nab proteins are predominantly localized within the nucleoplasm in a pattern similar to the distribution of hnRNPs in human cells. The NAB3 gene is essential for cell viability and encodes an acidic ribonucleoprotein. Loss of Nab3p by growth of a GAL::nab3 mutant strain in glucose results in a decrease in the amount of mature ACT1, CYH2, and TPI1 mRNAs, a concomitant accumulation of unspliced ACT1 pre-mRNA, and an increase in the ratio of unspliced CYH2 pre-mRNA to mRNA. These results suggest that the Nab proteins may be required for packaging pre-mRNAs into ribonucleoprotein structures amenable to efficient nuclear RNA processing.
    [Abstract] [Full Text] [Related] [New Search]