These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: an immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine. Author: González A, Marín O, Tuinhof R, Smeets WJ. Journal: J Comp Neurol; 1994 Aug 01; 346(1):63-79. PubMed ID: 7962712. Abstract: To get more insight into developmental aspects of catecholamine systems in vertebrates, in particular anuran amphibians, these systems were studied immunohistochemically in embryos and larvae of Xenopus laevis and Rana ridibunda. Antisera against tyrosine hydroxylase (TH) and dopamine (DA) revealed that catecholamine systems are already present at early embryonic stages. The first dopamine group to be detected was found ventral to the central canal of the spinal cord of Xenopus, soon followed by DA cell groups in the posterior tubercle, the hypothalamic periventricular organ, the accompanying cell group of the periventricular organ, and the suprachiasmatic nucleus. Although weakly TH-immunoreactive cells were found in the olfactory bulb at about the same embryonic stages, DA immunoreactivity was not detected until premetamorphic stage 49. Dopamine cell groups in the caudal brainstem, midbrain, and pretectum appeared at late premetamorphic and prometamorphic stages, whereas the preoptic group was first observed at the metamorphic climax stage. Rana showed an almost similar timetable of development of catecholamine cell groups, except for the caudal brainstem group which was already present at the end of the embryonic period. When compared with previous studies by means of formaldehyde-induced fluorescence technique, it becomes clear that TH/DA immunohistochemistry enables an earlier detection of catecholamine cell groups and fiber systems in anuran amphibians. The present study also revealed that the DA-immunoreactive cells of the hypothalamic periventricular organ never stained with the TH antiserum during development, thus supporting their putatively DA accumulating nature. Another notable result is the site of origin and rather late appearance of the midbrain dopaminergic cell group. It is suggested that the latter cell group only partly corresponds to the ventral tegmental area and substantia nigra of amniotes.[Abstract] [Full Text] [Related] [New Search]