These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: DNA-binding studies of the Epstein-Barr virus nuclear antigen 2 (EBNA-2): evidence for complex formation by latent membrane protein gene promoter-binding proteins in EBNA-2-positive cell lines.
    Author: Sauder C, Haiss P, Grässer FA, Zimber-Strobl U, Mueller-Lantzsch N.
    Journal: J Gen Virol; 1994 Nov; 75 ( Pt 11)():3067-79. PubMed ID: 7964616.
    Abstract:
    The Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) protein is essential for the immortalization of human primary B cells by EBV. EBNA-2 trans-activates cellular and viral genes like CD23, c-fgr, latent membrane protein 1 (LMP1) and terminal protein 1 (TP1). Trans-activation of the TP1 promoter and of the BamHI C promoter has already been investigated in detail and appears to be mediated via protein-protein interactions and not by direct binding of EBNA-2 type A (of EBV type 1) to the DNA. EBNA-2 is able to trans-activate the expression of the LMP gene in several cell lines. Various reports have delineated the cis-acting elements of the LMP promoter through which EBNA-2 mediates trans-activation. To determine whether EBNA-2 also trans-activates the LMP promoter by protein-protein interactions, we performed a series of gel retardation assays and competition experiments with LMP promoter fragments of different sizes. We determined that the protein-binding region on the LMP promoter was within a 42 bp fragment encompassing nucleotides -135 to -176 relative to the LMP transcriptional start site. None of the DNA fragments investigated indicated interaction of EBNA-2 with the DNA via protein-protein interactions. No significant differences between EBNA-2-positive and EBNA-2-negative nuclear extracts could be seen in the gel retardation assay under conditions that clearly showed binding of EBNA-2A to the TP1 promoter. However, analysis of sucrose gradient fractions in the gel retardation assay provided evidence that the LMP promoter-binding proteins form a complex of higher M(r) in EBNA-2-positive cell extracts. These complexes were destroyed by detergent. We deduce from these results that EBNA-2-positive cells might indeed contain specific complexes bound to the LMP promoter which are, however, too labile to be detected in a standard gel retardation assay.
    [Abstract] [Full Text] [Related] [New Search]