These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Agonist-specific calcium signaling and phosphoinositide hydrolysis in human SK-N-MCIXC neuroepithelioma cells.
    Author: Palmer RK, Yule DI, McEwen EL, Williams JA, Fisher SK.
    Journal: J Neurochem; 1994 Dec; 63(6):2099-107. PubMed ID: 7964729.
    Abstract:
    Fura-2 digital imaging microfluorimetry was used to evaluate the Ca2+ signals generated in single clonal human neuroepithelioma cells (SK-N-MCIXC) in response to agonists that stimulate phosphoinositide hydrolysis. Addition of optimal concentrations of either endothelin-1 (ET-1), ATP, oxotremorine-M (Oxo-M), or norepinephrine (NE) all resulted in an increase in the concentration of cytosolic calcium (Ca2+i) but of different magnitudes (ET-1 = ATP > Oxo-M > NE). The Ca2+ signals elicited by the individual agonists also differed from each other in terms of their latency of onset, rate of rise and decay, and prevalence of a sustained phase of Ca2+ influx. The Ca2+ signals that occurred in response to ATP had a shorter latency and more rapid rates of rise and decay than those observed for the other three agonists. Furthermore, a sustained plateau phase of the Ca2+ signal, which was characteristic of the response to Oxo-M, was observed in < 40% of cells stimulated with ET-1 and absent from Ca2+ signals elicited after NE addition. Removal of extracellular Ca2+ enhanced the rate of decay of Ca2+ signals generated by ATP, ET-1, or Oxo-M and, when evident, abolished the sustained phase of Ca2+ influx. In the absence of extracellular Ca2+, NE elicited asynchronous multiple Ca2+ transients. In either the absence or presence of extracellular Ca2+-, > 94% of cells responded to ET-1 or ATP, whereas corresponding values for Oxo-M and NE were approximately 74 and approximately 48%.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]