These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy.
    Author: Bessen RA, Marsh RF.
    Journal: J Virol; 1994 Dec; 68(12):7859-68. PubMed ID: 7966576.
    Abstract:
    The molecular basis of strain variation in scrapie diseases is unknown. The only identified component of the agent is the posttranslationally modified host prion protein (PrPSc). The biochemical and physical properties of PrP from two strains of transmissible mink encephalopathy (TME), called hyper (HY) and drowsy (DY), were compared to investigate if PrP heterogeneity could account for strain diversity. The degradation rate of PrPTME digested with proteinase K was found to be strain specific and correlated with inactivation of the TME titer. Edman protein sequencing revealed that the major N-terminal end of HY PrPTME commenced at least 10 amino acid residues prior to that of DY PrPTME after digestion with proteinase K. Analysis of the brain distribution of PrPTME exhibited a strain-specific pattern and localization of PrPTME to the perikarya of specific neuron populations. Our findings are consistent with HY and DY PrPTME having distinct protein conformations and/or strain-specific ligand interactions that influence PrPTME properties. We propose that PrPTME conformation could play a role in targeting TME strains to different neuron populations in which strain-specific formation occurs. These data are consistent with the idea that PrPTME protein structure determines the molecular basis of strain variation.
    [Abstract] [Full Text] [Related] [New Search]