These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Omega-agatoxin-TK containing D-serine at position 46, but not synthetic omega-[L-Ser46]agatoxin-TK, exerts blockade of P-type calcium channels in cerebellar Purkinje neurons. Author: Kuwada M, Teramoto T, Kumagaye KY, Nakajima K, Watanabe T, Kawai T, Kawakami Y, Niidome T, Sawada K, Nishizawa Y. Journal: Mol Pharmacol; 1994 Oct; 46(4):587-93. PubMed ID: 7969037. Abstract: omega-Agatoxin-TK (omega-Aga-TK), a 48-amino-acid peptide isolated from the venom of the funnel web spider (Agelenopsis aperta), is a selective and potent inhibitor of P-type calcium channels in the nervous system. We have synthesized a peptide that has the amino acid sequence identified for native omega-Aga-TK. The synthetic omega-Aga-TK, however, showed 80-90-fold less potent inhibition of P-type calcium channels, compared with native omega-Aga-TK. Enantiomer analysis of native omega-Aga-TK revealed D-serine at position 46, and synthetic omega-[D-Ser46]Aga-TK had the same potency as native omega-Aga-TK for blocking P-type calcium channels in cultured cerebellar Purkinje neurons. Two peptide fragments of omega-Aga-TK, namely omega-Aga-TK(1-43) and the carboxyl-terminal peptide fragment omega-Aga-TK(44-48), did not produce any significant inhibition of P-type calcium channels or interfere with the blockade of the channels elicited by native omega-Aga-TK. Molecular dynamics calculations showed that the carboxyl-terminal, six-amino-acid peptide of omega-Aga-TK containing D-Ser46 assumes a different conformation than does the peptide containing L-Ser46. These results suggest that the specific conformation of the carboxyl-terminal region of omega-Aga-TK, particularly the configuration of Ser46, together with a beta-sheet structure formed by four disulfide bonds, might be essential for blockade of P-type calcium channels.[Abstract] [Full Text] [Related] [New Search]