These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nucleotide-independent modulation of Ca(2+)-dependent K+ channel current by a mu-type opioid receptor.
    Author: Twitchell WA, Rane SG.
    Journal: Mol Pharmacol; 1994 Nov; 46(5):793-8. PubMed ID: 7969064.
    Abstract:
    Physiological responses to opiates and opioid peptides are transduced via receptors coupled to G proteins. The effectors for these G proteins are often ion channels or second messenger systems that modulate channel activity. In cultured bovine adrenal medullary chromaffin cells (BAMCCs), the activity of a calcium-dependent, voltage-sensitive, potassium (BK) channel is robustly potentiated by a mu-type opioid receptor, an effect consistent with the inhibitory role of opioids versus neural excitability. Patch-clamp electrophysiology was used to investigate coupling between the mu receptor and BK channel, leading to rather surprising results. Potentiation of BK channel activity by the mu-selective agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (10 nM) was unaffected by all attempts to disrupt or alter G protein function, including incubation of cells with pertussis toxin (PTX) and inclusion of guanosine 5'-O-(2-thio)diphosphate (GDP beta S) or guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) in intracellular recording solutions. However, dopamine D2 receptor potentiation of BK current in these same cells was affected by PTX, GDP beta S, and GTP gamma S in predictable fashion. Thus, PTX and GDP beta S inhibited dopamine potentiation of BK current, and GTP gamma S prolonged reversal of dopamine action. These results suggest that the BAMCC BK channel is not coupled to the mu receptor via a GTP-dependent mechanism, whereas in the same cells the dopamine D2 receptor modulates BK channel activity in a conventional GTP-dependent manner. In addition, replacement of both ATP and GTP with nonhydrolyzable analogs also failed to affect either potentiation or recovery of BK channel activity in response to [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin. These results indicate that in BAMCCs the mu-opioid receptor modulates BK channel activity independently of either G proteins or phosphorylation-dependent processes.
    [Abstract] [Full Text] [Related] [New Search]