These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular determinants of voltage-dependent inactivation in calcium channels. Author: Zhang JF, Ellinor PT, Aldrich RW, Tsien RW. Journal: Nature; 1994 Nov 03; 372(6501):97-100. PubMed ID: 7969428. Abstract: Voltage-dependent Ca2+ channels respond to membrane depolarization by conformational changes that control channel opening and eventual closing by inactivation. The kinetics of inactivation differ considerably between types of Ca2+ channels and are important in determining the amount of Ca2+ entry during electrical activity and its resulting impact on diverse cellular events. The most intensively characterized forms of inactivation in potassium and sodium channels involve pore block by a tethered plug. In contrast, little is known about the molecular basis of Ca(2+)-channel inactivation. We studied the molecular mechanism of inactivation of voltage-gated calcium channels by making chimaeras from channels with different inactivation rates. We report here that the amino acids responsible for the kinetic differences are localized to membrane-spanning segment S6 of the first repeat of the alpha 1 subunit (IS6), and to putative extracellular and cytoplasmic domains flanking IS6. Involvement of this region in Ca(2+)-channel inactivation was unexpected and raises interesting comparisons with Na+ channels, where the III-IV loop is a critical structural determinant. Ca(2+)-channel inactivation has some features that resemble C-type inactivation of potassium channels.[Abstract] [Full Text] [Related] [New Search]