These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression of genes involved in placental glucose uptake and transport in the nonobese diabetic mouse pregnancy.
    Author: Devaskar SU, Devaskar UP, Schroeder RE, deMello D, Fiedorek FT, Mueckler M.
    Journal: Am J Obstet Gynecol; 1994 Nov; 171(5):1316-23. PubMed ID: 7977540.
    Abstract:
    OBJECTIVE: Maternal diabetes alters placental glucose metabolism and maternofetal glucose transport. The purpose of this study was to determine whether genes involved in placental glucose uptake and transport were concomitantly altered, resulting in the observed changes in the state of maternal diabetes. STUDY DESIGN: By means of the nonobese diabetic pregnant mouse we examined the expression of placental glucose transporters, hexokinase I, glycogen content, glycogen-regulating enzyme activities in control animals (blood glucose 8.5 +/- 0.2 mmol/L, n = 25), moderate maternal diabetes (blood glucose 10 to 13.9 mmol/L, n = 16), and severe maternal diabetes (blood glucose > 16.7 mmol/L, n = 12). Comparisons by the analysis of variance and the Newman-Keuls test were performed. RESULTS: Although changes in placental glucose transporters and hexokinase I messenger ribonucleic acid levels occurred, neither state of diabetes altered the corresponding protein levels. Changes in placental deoxyribonucleic acid (p < 0.05) and glycogen content (p < 0.01), fetal insulin levels (p < 0.02), and fetal size (p < 0.05) occurred in the moderately diabetic group, and changes in placental weight (p < 0.05) and fetal glucose levels (p < 0.02) were observed in the severely diabetic group. CONCLUSIONS: Placental glucose transporting and phosphorylating protein levels by themselves do not regulate diabetes-induced fetoplacental alterations. The lack of a protective decline in these proteins may account for the observed fetoplacental adaptations to excess glucose.
    [Abstract] [Full Text] [Related] [New Search]