These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of recombinant trp by thapsigargin in Sf9 insect cells. Author: Vaca L, Sinkins WG, Hu Y, Kunze DL, Schilling WP. Journal: Am J Physiol; 1994 Nov; 267(5 Pt 1):C1501-5. PubMed ID: 7977711. Abstract: The mammalian protein responsible for Ca2+ release-activated current (Icrac) may be homologous to the Drosophila protein designated trp. Thus the activity of trp, and another Drosophila protein designated trp-like or trpl, may be linked to depletion of the internal Ca2+ store via the so-called capacitative Ca2+ entry mechanism. To test this hypothesis, the effect of thapsigargin, a selective inhibitor of the endoplasmic reticulum Ca2+ pump, on trp- and trpl-induced whole cell membrane current was determined using the baculovirus Sf9 insect cell expression system. The results demonstrate that trp and trpl form Ca(2+)-permeable cation channels. The trpl encodes a nonselective cation channel that is constitutively active under basal nonstimulated conditions and is unaffected by thapsigargin, whereas trp is more selective for Ca2+ than Na+ and is activated by depletion of the internal Ca2+ store. Although evaluation of cation selectivity suggests that trp is not identical to the channel responsible for Icrac, these channels must share some structural feature(s) since both are activated by thapsigargin. A unique proline-rich region in the COOH-terminal tail of trp, which is absent in trpl, may be necessary for capacitative Ca2+ entry.[Abstract] [Full Text] [Related] [New Search]