These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo adaptation of bicarbonate reabsorption by rat distal tubules during acid loading. Author: Levine DZ, Iacovitti M, Buckman S, Vandorpe D, Harrison V, Boisvert DM, Nadler SP. Journal: Am J Physiol; 1994 Nov; 267(5 Pt 2):F737-47. PubMed ID: 7977778. Abstract: We carried out in vivo microperfusion experiments in acid-loaded rats to characterize the adaptive response of the unidirectional components secretory flux (Jsec) and reabsorptive flux (Jreab)] of distal tubule bicarbonate reabsorption and to test the hypothesis that Jreab is dependent on bafilomycin A1-sensitive H(+)-adenosinetriphosphatase activity. During 18 h of severe acidosis there was a significant decrease in Jsec (-15 +/- 3 vs. -38 +/- 5 pmol.min-1.mm-1, P < 0.05) and a significant increase in Jreab (37 +/- 6 vs. 0 +/- 5 pmol.min-1.mm-1, P < 0.05), which was insensitive to 10(-5) M bafilomycin A1, 10(-5) M Sch-28080, and 3 mM amiloride. After 3 days of acid loading, these same inhibitors reduced Jreab by approximately 60%. However, when water flux was completely inhibited by isosmotic perfusion, a significant Jreab (15 +/- 2 pmol.min-1.mm-1) resistant to 10(-5) M bafilomycin A1 persisted, as in severe acidosis. In reabsorbing distal tubules of overnight-fasted rats, Sch-28080 elicited no inhibition, whereas bafilomycin A1 and amiloride had significant effects (28 +/- 5, 24 +/- 4, respectively, vs. 50 +/- 4 pmol.min-1.mm-1 for fasted rats, P < 0.05). Thus, although Jsec is reduced in the transition from mild to severe metabolic acidosis of 18-h duration, the predominant effect is a stimulation of bafilomycin A1-resistant Jreab.[Abstract] [Full Text] [Related] [New Search]