These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chemotactic peptide down-regulation of calcium mobilization induced by platelet-activating factor and by leukotriene B4 in human neutrophils is uncovered by protein phosphatase inhibitors.
    Author: Montero M, Garcia-Sancho J, Alverez J.
    Journal: Biochem J; 1994 Oct 15; 303 ( Pt 2)(Pt 2):559-66. PubMed ID: 7980418.
    Abstract:
    When human neutrophils were incubated in the presence of the protein phosphatase inhibitors calyculin A or okadaic acid, the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) produced a sustained (> 5 min) inhibition of the Ca2+ mobilization from intracellular stores induced by platelet-activating factor (PAF) or by leukotriene B4 (LTB4). No effect on Ca2+ mobilization by PAF or LTB4 was observed 2 min after the addition of fMLP alone or only in the presence of phosphatase inhibitors, but a similar inhibition was produced by high (> 50 nM) concentrations of phorbol 12,13-dibutyrate (PDB). However, inhibition by PDB was sensitive to the protein kinase C (PKC) inhibitors staurosporin and Ro 31-8220, while inhibition by fMLP and calyculin A was not. These results suggest that fMLP induces a transient phosphorylation not mediated by PKC which interferes at some point with the transduction pathway leading from the plasma membrane receptors for PAF and LTB4 to the release of Ca2+ from the stores. Protein phosphatases 1 and/or 2A revert the inhibition effected by fMLP within less than 2 min. PAF and LTB4 were also able to activate this mechanism to a smaller extent. Phosphatase inhibitors also delayed by 1-2 s the start of agonist-induced rises in [Ca2+]i, and this delay was further increased by previous addition of any other agonist. Finally, given that both phosphatase inhibitors and low concentrations of PDB (2-10 nM) strongly inhibit Ca2+ entry, we conclude that phosphorylation down-regulates both agonist-induced Ca2+ entry and Ca2+ mobilization, but with different potency.
    [Abstract] [Full Text] [Related] [New Search]