These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of a sodium-dependent concentrative nucleobase-transport system in guinea-pig kidney cortex brush-border membrane vesicles. Author: Griffith DA, Jarvis SM. Journal: Biochem J; 1994 Nov 01; 303 ( Pt 3)(Pt 3):901-5. PubMed ID: 7980460. Abstract: The characteristics of hypoxanthine transport were examined in purified brush-border membrane vesicles isolated from guinea-pig kidney. Hypoxanthine uptake in the vesicles was specifically stimulated by both Na+ and an inside-negative potential, resulting in a transient accumulation of intravesicular hypoxanthine. Na(+)-dependent hypoxanthine influx was saturable (apparent Km 4.4 +/- 2.1 microM, Vmax. 128 +/- 29 pmol/min per mg of protein at 100 mM NaCl and 22 degrees C). Guanine, thymine, 5-fluorouracil and uracil inhibited hypoxanthine uptake (Ki values 1-30 microM), but adenine and the nucleosides inosine and thymidine were without effect. Guanine competitively inhibited Na(+)-dependent hypoxanthine influx, suggesting that it was a substrate for the active nucleobase transporter in guinea-pig renal membrane vesicles. A sigmoidal dependence between hypoxanthine influx and Na+ concentration was obtained (KNa 13 +/- 2 mM; Hill coefficient, h, 2.13 +/- 0.14), suggesting that at least two Na+ ions are transported per hypoxanthine molecule. This system differs from the Na(+)-nucleobase carrier in cultured LLC-PK1 renal cells, which has a stoichiometric coupling ratio of 1:1. These results represent the first demonstration of an active electrogenic nucleobase carrier in renal apical membrane vesicles.[Abstract] [Full Text] [Related] [New Search]