These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Leishmania donovani-infected macrophages: characterization of the parasitophorous vacuole and potential role of this organelle in antigen presentation. Author: Lang T, Hellio R, Kaye PM, Antoine JC. Journal: J Cell Sci; 1994 Aug; 107 ( Pt 8)():2137-50. PubMed ID: 7983173. Abstract: Leishmania donovani amastigotes, the etiological agents of visceral leishmaniasis, are obligate intracellular parasites residing in membrane-bound compartments of macrophages called parasitophorous vacuoles (PV). The study of these organelles is of paramount importance to understanding how these parasites resist the microbicidal mechanisms of macrophages and how they escape the immune response of their hosts. Confocal microscopy of mouse bone marrow-derived macrophages infected with L. donovani amastigotes and stained for various prelysosomal/lysosomal markers and for major histocompatibility complex (MHC) molecules was used to define PV with respect to the endocytic compartments of the host cells and to address the issue of their potential role in antigen processing and presentation. Forty-eight hours after infection, many PV contained cathepsins B, D, H and L and they were all surrounded by a membrane enriched for the lysosomal glycoprotein lgp120/lamp 1 but apparently devoid of the cation-independent mannose 6-phosphate receptor, a membrane protein generally absent from the lysosomes. These data suggested that PV acquire within 48 hours the characteristics of a lysosomal compartment. However, both macrosialin and the GTP-binding protein rab7p (specific markers of the prelysosomal compartment) were found to be highly expressed in/on PV membrane. Thus, at this stage, PV appear to exhibit both lysosomal and prelysosomal features. Infected macrophages activated with IFN-gamma before or after infection showed PV strongly stained for MHC class II molecules but not for MHC class I molecules. This suggests that, if infected macrophages can act as antigen-presenting cells for class I-restricted CD8+ T lymphocytes, Leishmania antigens must exit the PV. MHC class II molecules reached the PV progressively, indicating that they were not plasma membrane-bound molecules trapped during internalization of the parasites. The redistribution of class II observed in infected cells did not alter their quantitative expression on the plasma membrane at least during the first 48 hours following the phagocytosis of the parasites. The invariant chains, which are transiently associated with class II molecules during their intracellular transport and which mask their peptide-binding sites, did not reach PV or were rapidly degraded in these sites, suggesting that PV-associated class II are able to bind peptides. This last assumption is strengthened by the fact that class II located in PV could bind conformational antibodies that preferentially recognize class II with tightly associated peptides.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]