These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stroke-prone SHR vascular muscle Ca2+ current amplitudes correlate with lethal increases in blood pressure.
    Author: Self DA, Bian K, Mishra SK, Hermsmeyer K.
    Journal: J Vasc Res; 1994; 31(6):359-66. PubMed ID: 7986960.
    Abstract:
    Studies on the possible causal relationship between the Ca2+ channel current density in the vascular muscle cell (VMC) and increases in blood pressure were extended by a comparison of stroke-prone spontaneously hypertensive rats (SP-SHR) with N/nih outbred normotensive rats. Maximal amplitudes of both L-type and T-type Ca2+ channel currents were significantly increased in SP-SHR without a difference in cell capacitance. SP-SHR peak current amplitudes in 20 mM Ba2+ averaged 446 +/- 64 pA while N/nih averaged 156 +/- 25 pA (clearly separated statistically). Both L-type and T-type Ba2+ currents (IBa) were significantly increased in SP-SHR, shown also by peak current frequency distributions. There was a significant shift to the left of both activation (7 mV) and inactivation (15 mV) current-voltage (I-V) plots. SP-SHR IBa recovery from inactivation was significantly slower (103 versus 61 ms) than in N/nih VMC. The increases in SP-SHR IBa amplitude under maximized conditions correlated with increases in blood pressure. Together with earlier observations of increased vascular muscle Ca2+ current density coexistent with blood pressure elevation in Kyoto-Wistar SHR, these data provide evidence for altered function of Ca2+ channels as a fundamental component of hypertension. Since the Ca2+ channel alterations exist in venous VMCs of newborn SP-SHR rats (in a low pressure blood vessel and at a time when increased Ca2+ current density could not be an effect of increased blood pressure), our results add to the growing evidence of Ca2+ channel abnormalities as a cause of genetic hypertension.
    [Abstract] [Full Text] [Related] [New Search]