These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of an enhancer/silencer sequence directing the aleurone-specific expression of a barley chitinase gene.
    Author: Leah R, Skriver K, Knudsen S, Ruud-Hansen J, Raikhel NV, Mundy J.
    Journal: Plant J; 1994 Oct; 6(4):579-89. PubMed ID: 7987416.
    Abstract:
    Chitinases are expressed in various plant tissues where they are thought to play a role in defense against chitin-containing pathogens. Transient gene expression assays have been used in tissues of barley to delineate promoter sequences involved in the regulation of an aleurone-specific chitinase gene (Chi26), and of a vegetatively expressed chitinase gene (Chi33). The assays measured the activities of transcriptional fusions between chitinase 5' upstream sequences and GUS reporter genes after DNA delivery by particle bombardment. Analysis of Chi26 5' and 3' promoter deletions indicated that sequences between -200 and -140 confer developmental and aleurone-specific expression. Deletions/replacements covering this part of the promoter indicated that sequences between -179 and -147 (E-region) direct expression in aleurone cells. The ability of the 33bp E-region of the Chi26 promoter to activate transcription specifically in aleurone was confirmed by constructing and testing two types of chimeric promoters. The first type, which contained two copies of the E-region fused to the CaMV 35S TATA box, conferred aleurone-specific expression of a GUS reporter gene. The second type, which contained a single copy of the E-region inserted into a deleted, inactive Chi33 promoter derivative, was also capable of directing transcription in aleurone but not in leaves. The pattern of expression of this and other Chi26/Chi33 chimeric promoters suggest that the E-region contains cis-acting sequences which activate transcription in aleurone and silence transcription in leaves. DNA sequence motifs implicated in the regulation of Chi26 and Chi33 are described.
    [Abstract] [Full Text] [Related] [New Search]