These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of glucagon-like peptide-1-(7-36) amide secretion by intestinal neurotransmitters and hormones in the isolated vascularly perfused rat colon.
    Author: Plaisancie P, Bernard C, Chayvialle JA, Cuber JC.
    Journal: Endocrinology; 1994 Dec; 135(6):2398-403. PubMed ID: 7988423.
    Abstract:
    Glucagon-like peptide-1 (GLP-1) is promptly released from endocrine cells of the distal part of the gut after oral ingestion of a meal. To test the possibility that hormones produced by the proximal small intestine or transmitters of the enteric nervous system may be involved in the early phase of meal-induced GLP-1 secretion, various intestinal regulatory peptides and neurotransmitters of the gut were administered intraarterially in the isolated vascularly perfused rat colon preparation. The release of GLP-1 in the portal effluent was measured by a specific RIA. Intraarterial infusion of glucose-dependent insulinotropic peptide (GIP) over the concentration range 0.25-1 nM evoked a dose-dependent release of GLP-1, with a maximal response of 350% of the basal value. Tetrodotoxin did not modify the GIP-induced release of GLP-1. Secretin or cholecystokinin did not stimulate the secretion of GLP-1. Bombesin (10(-9)-10(-7) M) provoked a dose-dependent release of GLP-1, consisting of an early peak, followed by a sustained response. Calcitonin gene-related peptide (5 x 10(-8) M) induced a dramatic rise of GLP-1 immunoreactivity in the portal effluent (peak at 800% of the basal value 10 min after the start of infusion). Similarly, the beta-adrenergic agonist isoproterenol at concentrations of 10(-7) and 10(-6) M provoked a pronounced release of GLP-1 (peak at 500% of the basal value with 10(-6) M isoproterenol). Finally, the muscarinic cholinergic agonist bethanechol at a concentration of 10(-4) M evoked a gradual increase in GLP-1 immunoreactivity, which reached a maximal value (900% over basal) at the end of the 30-min infusion period. The lowest concentration of bethanechol used in the present study (10(-5) M) did not increase portal GLP-1 immunoreactivity over the basal value. Tetrodotoxin did not modify the bethanechol-, isoproterenol-, calcitonin gene-related peptide-, or bombesin-induced GLP-1 release. In conclusion, the present study conducted with the isolated vascularly perfused rat colon shows that there are interactions between the two most potent incretins, GIP and GLP-1, probably through an enteroendocrine pathway. Additionally, several transmitters of the gut are potent stimulants of GLP-1 release and, therefore, represent potential tools in the treatment of the noninsulin-dependent diabetes mellitus.
    [Abstract] [Full Text] [Related] [New Search]