These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Author: Nourse J, Firpo E, Flanagan WM, Coats S, Polyak K, Lee MH, Massague J, Crabtree GR, Roberts JM. Journal: Nature; 1994 Dec 08; 372(6506):570-3. PubMed ID: 7990932. Abstract: The cyclin-dependent kinase (Cdk) enzymes, when associated with the G1 cyclins D and E, are rate-limiting for entry into the S phase of the cell cycle. During T-cell mitogenesis, antigen-receptor signalling promotes synthesis of cyclin E and its catalytic partner, Cdk2, and interleukin-2 (IL-2) signalling activates cyclin E/Cdk2 complexes. Rapamycin is a potent immunosuppressant which specifically inhibits G1-to-S-phase progression, leading to cell-cycle arrest in yeast and mammals. Here we report that IL-2 allows Cdk activation by causing the elimination of the Cdk inhibitor protein p27Kip1, and that this is prevented by rapamycin. By contrast, the Cdk inhibitor p21 is induced by IL-2 and this induction is blocked by rapamycin. Our results show that p27Kip1 governs Cdk activity during the transition from quiescence to S phase in T lymphocytes and that p21 function may be restricted to cycling cells.[Abstract] [Full Text] [Related] [New Search]