These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of fibroblast growth factors as inducing agents in early embryonic development.
    Author: Slack J.
    Journal: Mol Reprod Dev; 1994 Sep; 39(1):118-24; discussion 24-5. PubMed ID: 7999356.
    Abstract:
    To assess the potential role of a molecule in development we need to know three things: 1) what are the biological activities of the molecule, 2) what is its expression pattern, and 3) what are the consequences of removing it from the embryo? In the case of the FGF family in Xenopus embryos we have quite a lot of information about all three questions. Most members of the family can induce mesoderm from isolated animal caps, thus mimicking the natural "ventral vegetal" inducing signal operative in the blastula. This activity can be exerted on isolated, disaggregated cells and does not involve a change in division rate. When overexpressed from injected mRNA, the activity of FGFs depends largely on whether or not they possess a signal sequence, showing the importance of secretion in the inductive process. In addition to the mesoderm-inducing activity, there are effects of overexpression on whole embryos which lead to a suppression of anterior structures. Three types of FGF have so far been cloned from Xenopus: direct homologs of each of the mammalian types FGF-2 and FGF-3, and eFGF ("embryonic FGF"), which is equidistant in sequence from mammalian FGF-4 and FGF-6. Attempts to find homologs of mammalian FGF-5 and FGF-7 in Xenopus have proved unsuccessful. All three types of Xenopus FGF are expressed in early development. FGF-2 and eFGF are present in the oocyte and fertilized egg, and are thus both available at the time of mesoderm induction.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]