These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Author: Celeda D, Aldinger K, Haar FM, Hausmann M, Durm M, Ludwig H, Cremer C.
    Journal: Cytometry; 1994 Sep 01; 17(1):13-25. PubMed ID: 8001456.
    Abstract:
    Fluorescence in situ hybridization (FISH) has become an important tool not only in cytogenetic research but also in routine clinical chromosome diagnostics. Here, results of a quantification of fluorescence signals after in situ hybridization with repetitive DNA probes are reported using a non-enzymatic hybridization technique working with a buffer system not containing any formamide or equivalent chemical denaturing agents. Following simultaneous denaturation of both cells and DNA probes, the renaturation time was reduced to less than 30 min. For one of the DNA probes reasonable FISH-signals were even achieved after about 30 s renaturation time. In addition, the number of washing steps was reduced drastically. As a model system, two repetitive DNA probes (pUC 1.77, D15Z1) were hybridized to human metaphase spreads and interphase nuclei obtained from peripheral blood lymphocytes. The probes were labelled with digoxigenin and detected by FITC-anti-digoxigenin. The hybridization time was reduced step by step and the resulting fluorescence signals were examined systematically. For comparison the pUC 1.77 probe was also hybridized according to a FISH protocol containing 50% formamide. By renaturation for 2 h and overnight two FISH signals per nucleus were obtained. Using shorter renaturation times, no detectable FISH signals were observed. Quantification of the FISH signals was performed using a fluorescence microscope equipped with a cooled colour charge coupled device (CCD) camera. Image analysis was made interactively using a commercially available software package running on a PC (80486). For the pUC 1.77 probe the major binding sites (presumptive chromosomes 1) were clearly distinguished from the minor binding sites by means of the integrated fluorescence intensity. For the two (pUC 1.77) or four (D15Z1) brightest spots on the metaphase spreads and in the interphase nuclei hybridized without formamide, integrated fluorescence intensity distributions were measured for different renaturation times (0.5, 15, 30 min). The intra-nuclear variation in the intensity of the two brightest in situ hybridization spots appeared to be slightly higher (CV between 16 and 32%) than the corresponding variation in the metaphase spreads (CV between 10 and 19%). For the D15Z1 probe FISH signals were detected after hybridization without formamide and 15 min and 30 min renaturation. Always four bright spots were visible and tentatively assigned on the metaphase spreads (presumptive chromosome 15 and 9). The intensity variation of each pair of homologues in a metaphase spread showed a CV of 14 or 15%, respectively, for the presumptive chromosome 15, and 8 or 9%, respectively, for the presumptive chromosome 9.
    [Abstract] [Full Text] [Related] [New Search]