These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Site-directed mutagenesis and NMR studies of histidine-385 mutants of 5-enolpyruvylshikimate-3-phosphate synthase.
    Author: Shuttleworth WA, Evans JN.
    Journal: Biochemistry; 1994 Jun 14; 33(23):7062-8. PubMed ID: 8003471.
    Abstract:
    The site-directed mutagenesis of His-385 of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is reported. The steady-state kinetics for two mutants, H385Q and H385A, are compared with that of the wild-type enzyme. H385Q EPSP synthase was found to have 25% wild-type enzyme activity, whereas H385A EPSP synthase retained 1% activity. The KM values for Pi and shikimate 3-phosphate were unaffected, whereas the KM for phosphoenolpyruvate (PEP) was increased 10 times for H385Q EPSP synthase. The KM for EPSP was unaffected in H385Q but raised by a factor of 10 in H385A EPSP synthase. The binding of glyphosate was studied by fluorescence spectroscopy and by 31P NMR spectroscopy. Direct observation of the enzyme-intermediate complexes by 13C NMR spectroscopy with [2,3-13C]phosphoenolpyruvate was studied for the mutant enzymes and compared with the wild type. Under equilibrium conditions, H385A EPSP synthase does not accumulate enzyme-bound EPSP. These results suggest that, while critically located in the PEP binding site, His-385 is not the residue responsible for initiating catalysis through the protonation of PEP.
    [Abstract] [Full Text] [Related] [New Search]