These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cloning of Drosophila beta-adaptin and its localization on expression in mammalian cells. Author: Camidge DR, Pearse BM. Journal: J Cell Sci; 1994 Mar; 107 ( Pt 3)():709-18. PubMed ID: 8006084. Abstract: A Drosophila cDNA (BAD1) encoding a structural and assembly-competent homologue of the mammalian coated pit beta-adaptins (beta and beta') has been cloned and sequenced. In its amino-terminal region (residues 1-575), the BAD1 sequence appears intermediate between that of the mammalian beta-adaptin and a predicted sequence, from cDNA 105a, which appears to code for a version of beta'-adaptin. To test its functional characteristics, a 'myc'-tagged version of BAD1 was expressed in Cos cells. The BAD1 protein was detected most clearly in plasma membrane coated pits, where it colocalized with alpha-adaptin, although other coated pits were noted which apparently did not contain alpha-adaptin. However, these are probably gamma-adaptin containing pits, as BAD1 was also found colocalized with gamma-adaptin in Golgi coated pits in which, typically, alpha-adaptin is absent. Immunoprecipitation experiments confirmed that the BAD1 protein was present in both types of adaptor complex, unlike beta-adaptin which complexes with alpha-adaptin and beta'-adaptin which partners gamma-adaptin exclusively. In spite of this, BAD1 expression does not appear to mix alpha-adaptin and gamma-adaptin distribution amongst all the coated pits: thus the location of these adaptor complexes in mammalian cells does not depend on the differences between beta subunits but rather on membrane-specific interactions of other adaptor polypeptides. The differential interaction of beta with alpha-adaptin and beta' with gamma-adaptin in mammalian cells is likely to depend on the few non-conservative differences between their respective sequences and BAD1. Four of these (one with respect to beta and three versus 105a) are clustered in a particular region (residues 155 to 305), which may therefore represent a domain that influences the choice of partner adaptin.[Abstract] [Full Text] [Related] [New Search]