These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein conformational changes induced by 1,1'-bis(4-anilino-5-naphthalenesulfonic acid): preferential binding to the molten globule of DnaK.
    Author: Shi L, Palleros DR, Fink AL.
    Journal: Biochemistry; 1994 Jun 21; 33(24):7536-46. PubMed ID: 8011619.
    Abstract:
    1,1'-Bis(4-anilino-5-naphthalenesulfonic acid) (bis-ANS), a hydrophobic fluorescent molecular probe which has been shown to bind to compact intermediate states of proteins (molten globules) and also to many nucleotide binding sites, induces a conformational change in DnaK by preferentially binding to its partially folded intermediate state (I) and thus shifting the equilibrium from favoring the native state (N) to favoring the I state. The conformational change was detected by CD, fluorescence emission, size exclusion chromatography, and small-angle X-ray scattering. The presence of bis-ANS significantly decreases the midpoint, Tm, of the initial transition (N-->I) in the thermal unfolding of DnaK, resulting in the apparent destabilization of the native state of DnaK. There is a linear correlation between the apparent free energy (reflected by Tm) of this transition and the concentration of bis-ANS. Bis-ANS does not affect the midpoint of the transition for DnaK from the intermediate to the unfolded state (U). An additional small transition from I to I*, a more expanded intermediate state, was observed, suggesting that the thermal denaturation of DnaK proceeds via a four-state (N-->I-->I*-->U) unfolding process. The addition of nucleotides, ADP or ATP, to the DnaK-bis-ANS complex causes a decrease in bis-ANS fluorescence emission due to the release of bound bis-ANS from the intermediate state of DnaK. This is due to preferential binding of the nucleotide to the native state of DnaK, resulting in a shift in the equilibrium from the intermediate toward the native state rather than the direct displacement of bis-ANS bound in the nucleotide binding site. Denaturation of DnaK induced by bis-ANS can be minimized by working at a temperature much lower than the Tm of the protein, at low dye concentration, and in the presence of nucleotide. Under these conditions, bis-ANS binds to the native state of DnaK.
    [Abstract] [Full Text] [Related] [New Search]