These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Movement of single myosin filaments and myosin step size on an actin filament suspended in solution by a laser trap. Author: Saito K, Aoki T, Aoki T, Yanagida T. Journal: Biophys J; 1994 Mar; 66(3 Pt 1):769-77. PubMed ID: 8011909. Abstract: Movement of single myosin filaments, synthesized by copolymerization of intact myosin and fluorescently labeled light meromyosin, were observed along a single actin filament suspended in solution by a dual laser trap in a fluorescence microscope. The sliding velocity of the myosin filaments was 11.0 +/- 0.2 micron/s at 27 degrees C. This is similar to that of actin moving toward the center from the tip (the physiological direction) of myosin filaments bound to a glass surface but several times larger than that in the opposite direction (Ishijima and Yanagida, 1991; Yanagida, 1993). This indicates that the movement of myosin filaments is dominated by the myosin heads on one side of the myosin filament, which are correctly oriented relative to the actin filament. The incorrectly oriented myosin heads on the other side do not interfere with the fast movement. The step size (displacement produced during one ATPase cycle) of correctly oriented myosin was estimated from the minimum number of myosin heads necessary to produce the maximum velocity. This was determined by measuring the velocities of various lengths of myosin filaments. The minimum length of the myosin filaments moving near the maximum velocity was 0.30-0.40 microns, which contains 20 +/- 5 correctly oriented myosin heads. This number leads to a myosin step size of 71 +/- 22 nm. This value probably represents the lower limit, because all of the myosin heads on the filament would not always interact with the actin filament. Thus, the myosin step size is considerably larger than the length of a power stroke expected from the physical size of a myosin head, 10-20 nm (Huxley, 1957, 1969).[Abstract] [Full Text] [Related] [New Search]