These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pre-steady-state transient currents mediated by the Na/K pump in internally perfused Xenopus oocytes. Author: Holmgren M, Rakowski RF. Journal: Biophys J; 1994 Mar; 66(3 Pt 1):912-22. PubMed ID: 8011923. Abstract: Pre-steady-state transient currents have been investigated in the vegetal pole of Xenopus oocytes using the open-oocyte vaseline-gap technique of Taglialatela, Toro, and Stefani (Biophysical Journal. 61:78-82, 1992). Voltage pulses 40 ms in duration were made from a holding potential of -40 mV to command potentials over the range -160 to +60 mV in increments of 20 mV. Current records (averaged 20X; sampled every 200 microseconds) in the presence of dihydroouabain (DHO) or absence of external Na+ (Nao) were subtracted from current records obtained under Na/Na exchange conditions, i.e. internally perfused with 50 mM Na+, 5 mM ATP, and 5 mM ADP (K(+)-free) and externally superfused with 100 mM Na+,K(+)-free solution. Transient currents were dependent on intracellular Na+ and nucleotides, and diminished by activation of forward pumping; they were also reduced by 10 micrograms ml-1 of oligomycin B applied to the external solution. These properties of the pre-steady state currents are consistent with the Na/K pump operating in its electroneutral Na/Na exchange mode. The voltage dependence of the DHO- and Nao-sensitive transient currents was analyzed using a pseudo two-state model in which only the rate coefficient for Nao-binding/reocclusion is voltage-dependent (Rakowski, R. F. 1993. J. Gen. Physiol. 101:117-144). The apparent valence of the charge moved during the on (zq-on) and off (zq-off) of the pulse were 0.96 +/- 0.05 and 0.95 +/- 0.05 for Nao-sensitive, and 1.10 +/- 0.07 and 0.85 +/- 0.06 for DHO-sensitive transient currents, respectively. The total amount of charge moved (Qtot) and the mid-point voltage of the charge distribution (Vq) were 230 +/- 15 pC and -56.2 +/- 5.1 mV, and 268 +/- 34 pC and -67.0 +/- 7.6 mV for Nao- and DHO-sensitive transient currents, respectively. The apparent valence (zk) and the voltage at which the forward and backward rates are equal (Vk) obtained from the relaxation rates were 0.80 +/- 0.05 and -129.3 +/- 10.0 mV, and 0.86 +/- 0.10 and -135.1 +/- 9.0 mV for the Nao- and DHO-sensitive pre-steady state currents, respectively. The values of the parameters were not statistically significantly different between the Nao- and DHO-sensitive transient currents. Excluding the first 600 microseconds after the onset of a voltage step which was not temporally resolved, transient currents showed no indication of a rising phase. These results support the idea that charge translocation occurs within an external access channel at a rate that is governed by a voltage-dependent binding/reocclusion process and a voltage-independent deocclusion/unbinding process.[Abstract] [Full Text] [Related] [New Search]