These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polarized Na+/H+ exchange function is pliable in response to transepithelial gradients of propionate. Author: Rowe WA, Lesho MJ, Montrose MH. Journal: Proc Natl Acad Sci U S A; 1994 Jun 21; 91(13):6166-70. PubMed ID: 8016132. Abstract: Short-chain fatty acids are produced at high concentration in the colonic lumen and stimulate electroneutral Na+ absorption by activating apical Na+/H+ exchange in colonocytes. We used an epithelial cell line derived from a human colon carcinoma (HT29-18-C1) to study activation of apical and basolateral Na+/H+ exchange by a short-chain fatty acid, propionate. Confluent cell monolayers on membrane filters were loaded with 2',7'-bis(2-carboxyethyl)-5 (and 6)-carboxyfluorescein (a fluorescent pH indicator) and intracellular pH was monitored with a digital fluorescence imaging microscope. Cells acidified by transient exposure to NH4Cl demonstrated both apical and basolateral Na+/H+ exchange. In this condition, apical Na+/H+ exchange was 50% of the total Na+/H+ exchange activity. Similar results were obtained when cells were bilaterally perfused with apical and basolateral propionate in an isosmotic medium (130 mM propionate at each membrane surface). However, apical Na+/H+ exchange was a significantly larger fraction (76%) of the total Na+/H+ exchange activity when cells were acidified by exposure to apical propionate alone. Conversely, in cells acidified by basolateral propionate alone, apical Na+/H+ exchange was 21% of the total Na+/H+ exchange activity. The change in relative activity was observed in individual cells which expressed both apical and basolateral Na+/H+ exchange and occurred rapidly (within 7 min). In the presence of transepithelial propionate gradients, all Na(+)-dependent alkalinization was sensitive to 3 microM 5-(N-ethyl-N-isopropyl)amiloride, a potent Na+/H+ exchange inhibitor. These results suggest that transepithelial gradients of short-chain fatty acids, which occur in vivo, can cause preferential activation of apical Na+/H+ exchange.[Abstract] [Full Text] [Related] [New Search]